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Abstract. We survey and update data on runs of consecutive inte-

gers each having exactly r distinct prime factors (briefly, of principal
rank r). For 3 ≤ r ≤ 64 and other sporadic values, lower bounds are

given for the size of longest runs of consecutive integers of principal

rank r, together with upper bounds on the first occurrence of such
runs. We also prove that there are infinitely many pairs of consecu-

tive integers of principal rank r, for each r ≥ 3.

1. Introduction

For any positive integer n, the standard notation ω(n) denotes the num-
ber of distinct prime factors of n, as with ω(8) = ω(9) = 1. The sequence
A1221 in OEIS, the Online Encyclopedia of Integer Sequences [14], tabu-
lates an initial segment of the sequence ω(Z+). For brevity, and convenience
in discussion, we call ω(n) the principal rank of n, often omitting “princi-
pal”. In the same spirit, when referring here to positive integers we shall
omit “positive” for brevity.

The local structure of ω(Z+) has been the subject of various studies, such
as recent work by De Koninck et al [12] on fully heterogeneous blocks. Here,
in contrast, we study homogeneous blocks. Schlage-Puchta [15] recently
showed that ω(n) = ω(n + 1) has infinitely many integer solutions, so
ω(Z+) contains infinitely many homogeneous blocks of size at least 2.

For any rank r ≥ 1, the existence of runs of two or more consecutive
integers within the constant rank set Pr = {n ∈ Z+ : ω(n) = r} is of
considerable interest. We write n[s] ⊂ Pr when {n + i : 0 ≤ i < s} ⊂ Pr

and {n − 1, n + s} ∩ Pr = ∅, that is, n[s] denotes a maximal run of s
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consecutive integers, beginning with n, all of which have the same rank r.
For example, 31[2] ⊂ P1 and 33[3] ⊂ P2. Maximal runs in the principal rank
sets Pr were studied in [5].

As remarked in [5], from Mihăilescu [13] we know that 2[4] and 7[3] are
the unique maximal runs of size 4 and 3 in P1. Each subsequent nontrivial
maximal run in P1 has size 2, and must contain a Fermat or Mersenne
prime, so P1 has infinitely many nontrivial maximal runs if and only if
there are infinitely many Fermat or Mersenne primes.

Let s(Pr) denote the maximum size achieved by runs in Pr. It is easy to
see that s(Pr) must be finite. If Nr = p1p2 · · · pr is the product of the first
r primes, it is clear that s(Pr) < Nr+1. Moreover, there can be only finitely
many runs of size s ≥ 2Nr, in view of Størmer’s Theorem [17]. However,
the only exact value of s(Pr) known is the obvious s(P1) = 4.

In [5] it was proved that 8 ≤ s(P2) ≤ 9. Further, it was conjectured
that s(P2) = 8, in view of the facts that 141[8], 212[8], 323[7] and 2302[7]

are maximal runs in P2, and these are the only runs of size greater than
6 in {n ∈ P2 : n ≤ 1025}. Indeed, Schneider [16] has since computed that
there is no run of size 9 in {n ∈ P2 : n ≤ 10700}. For higher ranks, [5]
showed that s(P3) ≥ 16, s(P4) ≥ 14, s(P5) ≥ 7, s(P6) ≥ 3, and s(Pr) ≥ 2
for 7 ≤ r ≤ 10.

2. Computations for n ≤ 1012 and n ≤ 1013

To obtain further concrete information about ω(Z+), we subsequently
used Magma [1] to compute the initial segment ω(n ≤ 1012). Table 1
summarizes the frequencies of principal ranks for n ≤ 1012 (see also [11]).

Table 1. Frequencies of principal ranks up to 1012.

r Frequency
0 1
1 37 607 992 088
2 163 437 431 298
3 293 574 084 591
4 283 019 940 982
5 158 910 601 699
6 52 588 537 590
7 9 868 001 325
8 953 640 790
9 39 306 280

10 462 922
11 434
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We made a census of various profiles [2] within ω(n ≤ 1012), especially
the plateaux (maximal nontrivial runs of consecutive integers in one con-
stant rank set Pr). For r ≥ 1 and s ≥ 2, let n(r, s) denote the starter of the
first plateau of height r and size s in ω(Z+); for example, n(2, 8) = 141 and
n(2, 7) = 323. Note that although the size 8 run at 141 includes two runs of
size 7, neither is maximal; the run starting at 323 is the first maximal run of
size 7. The plateaux in ω(n ≤ 1012) exhibit 63 distinct pairs of parameters
(r, s). In particular, n(4, 23) = 585 927 201 062 is the starter of the unique
largest plateau in ω(n ≤ 1012). Every other plateau in ω(n ≤ 1012) has
size s ≤ 19. These plateaux yield the improved lower bounds s(P3) ≥ 18,
s(P4) ≥ 23, s(P5) ≥ 10, s(P6) ≥ 6 and s(P7) ≥ 3.

For fixed rank r, the sequence (n(r, s) : s ≥ 2) corresponds to A80569
(r = 3), A87977 (r = 4), A87978 (r = 5), A138206 (r = 6), A138207
(r = 7), or A154573 (r = 8). However, note that these OEIS sequences
list the starter of the first run of size at least s rather than size exactly s,
so they begin with Nr (for s = 1) and have repeated terms wherever the
sequence (n(r, s) : s ≥ 2) fails to increase monotonically. The instances
with n ≤ 1012 where this occurs are

n(3, 12) = 534 078, n(3, 13) = 2 699 915, n(3, 14) = 526 095;

n(4, 6) = 2 713 332, n(4, 7) = 1 217 250;

n(4, 18) = 203 594 236 366, n(4, 19) = 118 968 284 928.

To accommodate such failures of monotonicity, we have introduced [4] the
OEIS sequences A185032 and A185042. For fixed size s, the sequence
(n(r, s) : r ≥ 1) similarly corresponds to sequence A93548 (s = 2) or
A93549 (s = 3). The OEIS commentaries credit Fuller [6] with n(8, 2)
and n(9, 2), while Johnson [8, 9] is credited with n(10, 2), n(11, 2) and also
n(7, 3) and n(8, 3).

The commentaries on the OEIS sequences for constant rank r indicate
that Johnson [10] computed ω(n ≤ 1013). In the interval n ≤ 1012 our com-
putations independently confirm his announced results. For convenience,
we now assemble the record holders for n ≤ 1012 together with Fuller’s and
Johnson’s additional contributions:

r = 3 : n(3, 18) = 146 216 247 221 < 1012, and

n(3, s) > 1013 for s ≥ 19, if it exists.

r = 4 : n(4, 23) = 585 927 201 062 < 1012, and

n(4, s) > 1013 for s = 20, 21, 22 and s ≥ 24, if they exist.

r = 5 : n(5, 10) = 287 980 277 114 < 1012,

n(5, 11) = 1 182 325 618 032 > 1012,
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http://oeis.org/A138206
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http://oeis.org/A154573
http://oeis.org/A185032
http://oeis.org/A185042
http://oeis.org/A93548
http://oeis.org/A93549


4 R. B. EGGLETON, J. S. KIMBERLEY, AND J. A. MACDOUGALL

n(5, 12) = 6 455 097 761 454 > 1012, and

n(5, s) > 1013 for s ≥ 13, if it exists.

r = 6 : n(6, 6) = 626 804 494 291 < 1012,

n(6, 7) = 7 563 009 743 844 > 1012, and

n(6, s) > 1013 for s ≥ 8, if it exists.

r = 7 : n(7, 3) = 30 989 984 674 < 1012,

n(7, 4) = 1 673 602 584 618 > 1012, and

n(7, s) > 1013 for s ≥ 5, if it exists.

r = 8 : n(8, 2) = 65 893 166 030 < 1012,

n(8, 3) = 10 042 712 381 260 ≈ 1013, and

n(8, s) > 1013 for s ≥ 4, if it exists.

r = 9 : n(9, 2) = 5 702 759 516 090 < 1013, and

n(9, s) > 1013 for s ≥ 3, if it exists.

n(r, s) > 1013 for r ≥ 10 and s ≥ 2, if it exists.

r = 10 : n(10, 2) = 490 005 293 940 084 < 1015.

r = 11 : n(11, 2) = 76 622 240 600 506 314 < 1017.

These results do not improve the lower bounds s(P3) ≥ 18 and s(P4) ≥
23, but do give us the improved bounds s(P5) ≥ 12, s(P6) ≥ 7, s(P7) ≥ 4,
and s(P8) ≥ 3.

In [5] we remarked on failures of monotonicity, in the sequences (n(r, s) :
s ≥ 2) for fixed r. Now we can note the more striking example

n(4, 19) < n(3, 18)

showing the failure of monotonicity in both parameters simultaneously.

3. Higher Ranks

Partition the first st primes {p1, p2, · · · , pst} into s sets of size t, with
products mi for 0 ≤ i < s, so m0m1 · · ·ms−1 = Nst. By the Chinese
Remainder Theorem, there is a unique positive integer n0 < Nst such that

n0 + i ≡ 0 (mod mi) for 0 ≤ i < s.

Let nk = n0 +kNst, for k ≥ 0. There are integers qi such that n0 + i = miqi

for 0 ≤ i < s, so we can define qi,k = qi + kNst/mi for 0 ≤ i < s and
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k ≥ 0. Then nk + i = miqi,k for 0 ≤ i < s, k ≥ 0. It follows that
ω(nk + i) ≥ ω(mi) = t for 0 ≤ i < s.

There are heuristic grounds to expect that n
[s]
k ⊂ Pr for some relatively

small values of k and various ranks r equal to or slightly larger than t. Each
“success” provides us with an instance of a plateau of rank r ≥ t and size
at least s. We call this the Chinese Remainder method for selecting likely
starters of principal rank plateaux. For our main implementation we chose
s products mi of comparable magnitude by partitioning the first st primes
so that

mi =
∏
{pj : 1 ≤ j ≤ st | j ≡ i + 1, −i (mod 2s)} for 0 ≤ i < s.

This produced instances of plateaux of rank r and size s for 9 ≤ r ≤ 64
with s = 2, for 8 ≤ r ≤ 32 with s = 3, for 7 ≤ r ≤ 19 with s = 4, for
7 ≤ r ≤ 15 with s = 5, and for 7 ≤ r ≤ 11 with s = 6 (see [3]). Of course,
the starters in all cases are larger than 1013; indeed, most are very much
larger. In particular, the instance with (r, s) = (53, 2) arises from t = 50,
k = 4 and the 221 digit starter

n4 = 19 749 679 144 729 629 383 908 714 098 269 221 603 094
436 889 433 057 615 898 886 873 725 626 596 853 647 892 257
452 228 874 060 200 487 940 193 303 962 861 555 803 779 979
497 010 248 369 524 239 457 369 352 851 534 301 395 043 448
026 143 509 096 224 791 036 513 898 994 716 984 922 582 034.

4. Current Best Lower Bounds

Combining our Chinese Remainder method results with the earlier data
from our computations and Johnson’s, we have

Theorem 4.1. The following are lower bounds for the maximum length
s(Pr) of any run of consecutive integers with principal rank r:

s(P3) ≥ 18, s(P4) ≥ 23, s(P5) ≥ 12, s(P6) ≥ 10, s(P7) ≥ 8, s(P8) ≥ 7;

s(Pr) ≥ 6 for r ∈ {9, 10, 11}, s(Pr) ≥ 5 for r ∈ {12, . . . , 15},
s(Pr) ≥ 4 for r ∈ {16, . . . , 19}, s(Pr) ≥ 3 for r ∈ {20, . . . , 32},

and s(Pr) ≥ 2 for r ∈ {33, . . . , 64}.

The sporadic cases s(P23) ≥ 4, s(P67) ≥ 2 and s(P69) ≥ 2 were found
fortuitously.

Based on the starters we computed by the Chinese Remainder method,
we can specify simple upper bounds on the starters of the long runs implied
by Theorem 4.1.
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Theorem 4.2. The sequence ω(n ≤ 10a) contains at least one plateau of
rank r and size s in the following cases:

a = 50 : (r, s) = (6, 10), (7, 8), (8, 7), (9, 6).

a = 100 : (r, s) = (10, 6), (11, 6), (12, 5), (13, 5), (14, 5), (16, 4), (17, 4), (20, 3).

a = 150 : (r, s) = (15, 5), (18, 4), (19, 4), (21, 3), (22, 3), (23, 4), (24, 3), (25, 3),

(26, 3), (27, 3), (28, 3), (29, 3), (33, 2), (34, 2), (35, 2), (36, 2),

(37, 2), (38, 2), (39, 2).

a = 200 : (r, s) = (30, 3), (31, 3), (32, 3), (40, 2), (41, 2), (42, 2), (43, 2), (44, 2),

(45, 2), (46, 2), (47, 2), (48, 2), (49, 2), (50, 2).

a = 250 : (r, s) = (51, 2), (52, 2), (53, 2), (54, 2), (55, 2), (56, 2), (57, 2), (58, 2),

(59, 2).

a = 300 : (r, s) = (60, 2), (61, 2), (62, 2), (63, 2), (64, 2).

a = 350 : (r, s) = (67, 2), (69, 2).

The interested reader is referred to the reports [2, 3] for discussion and
further details of the data supporting this paper. In particular, more detail
on Theorem 4.2 is given in the Addendum to [3]: for example, there is a
plateau of rank 6 and size 10 in the interval 44.90 < a < 44.91.

In view of the success of the Chinese Remainder method, with no appar-
ent limitations in principle for higher ranks, it is natural to propose (see [5])

Conjecture 4.3. s(Pr) ≥ 2 for all r ≥ 1.

5. Asymptotic Behaviour

If Pr contains infinitely many runs of size s∗, but only finitely many
larger runs, we denote s∗ by s∗(Pr). Thus

s∗(Pr) = lim supN{s : n[s] ⊂ Pr, n > N}.
Trivially s∗(Pr) ≥ 1, but considerably stronger than Conjecture 4.3 is

Conjecture 5.1. s∗(Pr) ≥ 2 for all r ≥ 1.

In particular, we know s∗(P1) ≤ 2, and s∗(P1) = 2 holds just if there are
infinitely many Fermat or Mersenne primes. Utilizing recent sieve results,
we can in fact prove Conjecture 4.3 completely, and Conjecture 5.1 for
r ≥ 3, as follows.

A set of k ≥ 2 linear forms S(x) = {Li(x) = aix + bi : 1 ≤ i ≤ k} is
admissible if for each prime p there is an integer np such that none of the
integers in S(np) is a multiple of p. The key theorem we shall apply is

Theorem 5.2 (Goldston, Graham, Pintz and Yıldırım [7]). If S(x) =
{Li(x) = aix + bi : 1 ≤ i ≤ 3} is an admissible set of three linear forms,
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then for infinitely many integers n at least two of the integers in S(n) are
products of exactly two distinct primes, each of which is greater than n1/144.

We are greatly indebted to an anonymous referee for sharing with us the
r = 3 argument in the following theorem.

Theorem 5.3. s∗(P3) ≥ 2 and s∗(P4) ≥ 2.

Proof. The set S3(x) = {4x + 3, 6x + 5, 9x + 7} is admissible, verified by
evaluating at x2 = 0 and xp = p − 1 for p ≥ 3. Now suppose n > 3144 is
such that at least two integers in S3(n) are products of two distinct primes,
each greater than 3. Then one of the sets

{3(4n + 3), 2(6n + 5)}, {9(4n + 3), 4(9n + 7)}, {2(9n + 7), 3(6n + 5)}
is a pair of consecutive integers in P3. It follows from Theorem 5.2 that
there are infinitely many such pairs, so s∗(P3) ≥ 2.

Similarly, S4(x) = {200x + 161, 210x + 169, 441x + 355} is admissible,
so for infinitely many integers n > 7144 at least two integers in S4(n) are
products of two distinct primes, each greater than 7. For any such n, one
of the sets

{20(210n + 169), 21(200n + 161)},
{200(441n + 355), 441(200n + 161)},
{21(210n + 169), 10(441n + 355)}

is a pair of consecutive integers in P4. Hence s∗(P4) ≥ 2. �

Adapting the ideas used in proving Theorem 5.3, we shall now show

Lemma 5.4. For any r ≥ 1, if s(Pr) ≥ 2 and some pair in Pr includes a
multiple of 3, then s∗(Pr+2) ≥ 2, and infinitely many pairs in Pr+2 include
a multiple of 3.

Proof. Suppose {A, A + 1} ⊂ Pr satisfies A(A + 1) ≡ 0 (mod 3). Let S(x)
comprise the three linear forms

L1(x) = A2x + (A− 1)2,

L2(x) = A(A + 1)x + A2 −A− 1,

L3(x) = (A + 1)2x + A2 − 2.

Each linear form has coprime coefficients. The mod 3 condition ensures
that no member of S(1) is divisible by 2 or 3. For any prime p ≥ 5 there
are at most three residue class solutions to

L1(x) L2(x) L3(x) ≡ 0 (mod p),

so there are residue classes n (mod p) for which no member of S(n) is a
multiple of p. Hence S(x) is an admissible set.
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If q is the largest prime factor of A(A + 1), Theorem 5.2 ensures that
there are infinitely many integers n > q144 such that at least two integers
in S(n) are products of exactly two distinct primes, each greater than q.
For each such n, at least one of the sets

{AL2(n), (A + 1)L1(n)},
{(A + 1)L2(n), AL3(n)},
{A2L3(n), (A + 1)2L1(n)}

is a pair of consecutive integers in Pr+2. Since each set contains a multiple
of 3, the lemma follows. �

The set S(x) used in the proof of Lemma 5.4 is not necessarily the only
suitable choice. For example, neither of the sets S3(x) and S4(x) used for
Theorem 5.3 exactly conforms to S(x).

Theorem 5.5. s∗(Pr) ≥ 2, and infinitely many pairs in Pr include a
multiple of 3, for all r ≥ 3.

Proof. If s∗(Pr) ≥ 2, and infinitely many pairs in Pr include a multiple of
3, any such pair ensures that s∗(Pr+2) ≥ 2, and infinitely many pairs in
Pr+2 include a multiple of 3, by Lemma 5.4. The linear forms constructed
in Theorem 5.3 establish the instances r = 3 and r = 4, so iteration yields
the theorem. �

Since s(P1) = 4, s(P2) ≥ 8, and s(Pr) ≥ s∗(Pr), Conjecture 4.3 is now
completely proved, and Conjecture 5.1 is proved except in the key instances
r = 1 and r = 2.
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